Лучшие брокеры Форекс Книги по техническому анализу Полный список литературы Книги по торговым стратегиям Лучшие брокеры:
бинарныебиржевые
Лучшие брокеры Форекс Полный список литературы Бинарные брокеры
Биржевые брокеры

Глава 4. Французские знакомства

Акелис С.Б. Технический анализ от А до Я

Аррингтон Дж.Р. Руководство по управлению рисками

Баффет У. Эссе об инвестициях, корпоративных финансах и управлении компаниями

Беллафиоре М. Один хороший трейд

Бернстайн П. Против богов: Укрощение риска

Борселино Л.Дж., Комминс П. Дейтрейдер: кровь, пот и слезы успеха

Вайс М.Д. Делай деньги во время паники на бирже

Вильямс Л. Долгосрочные секреты краткосрочной торговли

Гюнтер М. Аксиомы биржевого спекулянта

Даглас М. Дисциплинированный трейдер. Бизнес-психология успеха

Дамодаран А. Инвестиционные байки: разоблачение мифов о беспроигрышных биржевых стратегиях

Демарк Т.Р. Технический анализ – новая наука

Дэвидсон А. Скользящий по лезвию фондового рынка

Ильин В.В., Титов В.В. Биржа на кончиках пальцев

Ковел М. Биржевая торговля по трендам. Как заработать, наблюдая тенденции рынка

Коннорс Л.А., Рашке Л.Б. Биржевые секреты

Коппел Р. Быки, медведи и миллионеры. Хроники биржевых сражений

 

 

Ни Кардано, ни Галилео не заметили, что они вплотную подошли к формулировке законов вероятности, являющихся главным орудием управления риском. Кардано сделал на основе своих экспериментов ряд весьма важных обобщений, но интересовала его не столько теория вероятностей, сколько оптимизация игры, а Галилео даже теория игры не особо интересовала.

Галилео умер в 1654 году. Двенадцать лет спустя три француза осуществили наконец гигантский прорыв в таинственный мир неопределенности, и затем меньше чем за десять лет рудиментарная идея превратилась в хорошо разработанную теорию, расчистившую путь замечательным практическим достижениям. Голландец Гюйгенс в 1657 году опубликовал ставший очень популярным учебник по теории вероятностей (который в 1664 году внимательно прочел и отметил Ньютон); примерно в это же время Лейбниц размышлял над возможностью применения теории вероятностей к решению юридических проблем; а в 1662 году монахи парижского монастыря Пор-Рояль выпустили новаторскую работу по философии и вероятности под названием «La logique» («Логика»). В 1660 году англичанин Джон Грант опубликовал результаты своего анализа демографических данных на основе статистики смертности, взятой им из записей в церковноприходских регистрационных книгах. К концу 1660 года в голландских городах, традиционно финансировавших городские нужды за счет продажи пожизненной ренты, на этой основе была создана действенная система страхования. К 1700 году, как мы уже отмечали ранее, и английское правительство стало покрывать свой бюджетный дефицит за счет продажи полисов пожизненной ренты.

А началось все со странной троицы французов, которые, глядя на игровой стол, заложили теоретические основы измерения вероятности. Одним из них был Блез Паскаль, блистательный молодой повеса, который стал впоследствии религиозным фанатиком и кончил полным отрицанием ценности разума. Другой, Пьер Ферма, преуспевающий адвокат, для которого математика была побочным занятием. Третьим был аристократ Шевалье де Мере, совмещавший свое увлечение математикой с неудержимой страстью к азартным играм; он вошел в историю тем, что сформулировал задачу, решение которой привело двух остальных на тропу открытий.

Ни молодой повеса, ни адвокат не нуждались в экспериментах для подтверждения своих гипотез. В отличие от Кардано они с первых шагов работы над теорией вероятностей пользовались индуктивным методом. Теория позволила измерять вероятности в численном виде и отказаться от принятия решений на основе субъективных мнений.

Склонный к философствованию знаменитый математик Паскаль родился в 1623 году, когда Галилей заканчивал эссе «Об игре в кости». Рожденный во время религиозных войн XVII столетия, он провел полжизни в метаниях между блистательной математической карьерой и уходом в религиозную экзальтацию, по существу своему антиинтеллектуальную. Хотя он был замечательным математиком и гордился своими достижениями как «мастера геометрии», самой сильной страстью его жизни оказались в конечном итоге религиозные переживания.

Паскаль начинал жизнь как вундеркинд. Очарованный формами и фигурами мальчик самостоятельно доказал большинство теорем евклидовой геометрии, заполняя геометрическими построениями плитки пола детской комнаты. В возрасте 16 лет он написал работу, посвященную коническим сечениям, поразившую великого Декарта.

Увлечение маленького Блеза математикой сослужило хорошую службу его отцу, который тоже был в своем роде математиком и вел обеспеченную жизнь в качестве сборщика, а если говорить точнее, откупщика налогов. Откупщик налогов ссужал деньгами монарха, подобно фермеру, засевающему поле, – и затем собирал деньги с населения, как тот же фермер собирает жатву, в надежде собрать больше, чем посеял.

Когда Паскаль был еще совсем мальчишкой, он изобрел и запатентовал счетную машину для облегчения скучной работы М. Паскаля по ежедневному подведению баланса. Это хитроумное механическое устройство с приводами и колесами, которые вращались взад-вперед, складывая и вычитая, было предшественником современных электронных калькуляторов. Юный Паскаль выполнял на своей машине также умножение и деление и даже начал разрабатывать конструкцию для извлечения квадратных корней. К сожалению, в течение последующих 250 лет клерки и бухгалтеры не могли использовать эту машину из-за очень высокой стоимости.

Заметив гениальные способности своего сына, отец Блеза, когда тому исполнилось четырнадцать лет, ввел его в избранный кружок, еженедельно собиравшийся для дискуссий в доме иезуитского священника по имени Марен Мерсенн, расположенном недалеко от Королевской площади в Париже. В первой половине XVII века дом аббата Мерсенна был центром мировой науки и математики. Не довольствуясь организацией еженедельных дискуссий с участием крупнейших ученых, аббат своим неровным почерком вел обширнейшую переписку с учеными всей Европы, сообщая всем и каждому обо всем, что было нового и интересного.

В отсутствие ученых обществ, профессиональных журналов и других средств обмена идеями и информацией Мерсенн внес ценный вклад в развитие и распространение новых научных теорий. Парижская Академия наук и Лондонское Королевское общество, основанные лет через двадцать после его смерти, были прямыми наследниками его кружка.

Хотя ранние работы Блеза Паскаля по геометрии и алгебре произвели большое впечатление на сильных математиков, которых он встретил в кружке Мерсенна, у него скоро возникли прямо противоположные интересы. В 1646 году старший Паскаль поскользнулся на льду и сломал бедро; костоправы, приглашенные ухаживать за ним, оказались членами ордена янсенистов. Эти люди верили, что единственный путь к спасению лежит через аскетизм, жертвенность, смирение и самоограничение. Они проповедовали, что человек, который не стремится неустанно ко все более высокому духовному очищению, неминуемо скатится в бездну греха. Утверждая примат чувства и веры, они третировали разум, считая его помехой на пути к искуплению.

Залечив бедро Паскаля-отца, янсенисты в течение трех месяцев обрабатывали душу Паскаля-сына, который с энтузиазмом воспринял их доктрину. Теперь он избегал и математики, и других наук, и всех развлечений своей прежней парижской жизни. Религия поглотила его целиком. Объясняя свое состояние, он смог только сказать: «Кто поместил меня сюда? По чьему повелению и предписанию это место и это время предназначены мне? Вечная тишина этого бесконечного пространства приводит меня в ужас».

Ужас неожиданно поразил его и с другой стороны. В 1650 году в возрасте 27 лет он стал жертвой частичного паралича, его преследовали страшные головные боли, и было трудно глотать пищу. В качестве лечения доктора предписали ему встряхнуться и вернуться к прежней рассеянной жизни. Не теряя времени, Паскаль последовал их советам. После смерти отца он сказал своей сестре: «Не будем горевать, подобно язычникам, не имеющим надежды». Он встряхнулся настолько, что даже превзошел свой прежний разгульный образ жизни, и стал постоянным посетителем парижских игорных домов.

Вернувшись к мирской суете, Паскаль возобновил свои исследования, касающиеся математики и смежных дисциплин. В одном из экспериментов он, вопреки господствовавшему еще со времен Аристотеля мнению, будто природа боится пустоты, доказал существование вакуума. В ходе этого эксперимента он продемонстрировал, что атмосферное давление может быть измерено на разных высотах с помощью ртути, заключенной в трубку, из которой выкачан воздух.

Примерно в это же время состоялось знакомство Паскаля с шевалье де Мере, который гордился своими математическими способностями и умением просчитывать шансы в казино. Как-то в конце 1650 года в письме к Паскалю он хвастал: «Я открыл в математике вещи весьма необычные, о которых лучшие ученые прежних времен никогда не помышляли и которыми были поражены лучшие математики Европы».

Кажется, он сумел произвести впечатление на самого Лейбница, отозвавшегося о шевалье как о «человеке острого ума, который был одновременно игроком и философом». Правда, в другой раз Лейбниц заметил: «Я почти смеялся над важничаньем шевалье де Мере в его письме к Паскалю».

Паскаль согласился с Лейбницем. «У месье де Мере, – писал он своему коллеге, – хорошая голова, но он не геометр, а это, сами понимаете, большой недостаток». Здесь Паскаль высказался как профессионал, которому приятно уколоть дилетанта. Во всяком случае, он не особенно высоко ставил математические достижения шевалье.

Однако именно от Паскаля мы узнаём об интуитивном понимании вероятности, которым обладал де Мере. Играя, он ставил вновь и вновь на комбинации, приносившие ему небольшие выигрыши, которые его противники считали чисто случайными. Согласно Паскалю, он знал, что если метнуть одну кость четыре раза, то вероятность увидеть шестерку превысит 50%, а точнее – 51,77469136%. Его стратегия заключалась в том, чтобы выигрывать помалу при большом числе бросков, избегая делать редкие крупные ставки. Эта стратегия требовала много денег, потому что шестерка могла довольно долго не выпадать и приходилось удлинять серию бросков, дожидаясь, пока средний процент появления шестерки превысит 50%.

Де Мере пытался варьировать свою систему, ставя на то, что sonnez, или дубль-шесть, в 24 бросках двух костей должен выпадать с вероятностью, большей 50%. На этом он потерял довольно много денег, пока не выяснилось, что эта вероятность при 24 бросках составляет только 49,14%. Если бы он ставил на 25 бросков, при которых вероятность дубль-шесть составляет 50,55%, он мог бы разбогатеть. История освоения стратегии риска окрашена не только в красный цвет, но и в черный.

До встречи с Паскалем шевалье неоднократно обсуждал со многими французскими математиками задачу об очках – как два игрока в balla должны разделить банк в случае прекращения неоконченной игры, однако никто не смог дать ему вразумительный ответ.

Хотя эта задача заинтересовала Паскаля, он не захотел решать ее самостоятельно. В наши дни такая проблема стала бы темой обсуждения для группы специалистов на ежегодном семинаре одного из научных обществ. Во времена Паскаля такой форум был невозможен. В лучшем случае небольшая компания ученых могла обсудить проблему в интимной обстановке гостиной аббата Мерсенна, но обычно в таких ситуациях прибегали к личной переписке с другими математиками, которые могли подсказать что-либо полезное для решения задачи. В 1654 году Паскаль обратился к Пьеру де Каркави, члену кружка аббата Мерсенна, который свел его с тулузским адвокатом Пьером де Ферма.

Вряд ли Паскаль мог найти лучшего партнера для решения этой задачи. Ферма был феноменально образованным человеком. Он говорил на всех основных европейских языках, на некоторых из них даже писал стихи и составлял обширные комментарии к греческим и римским авторам. Кроме того, он обладал редкостным талантом математика. Независимо от Декарта он изобрел аналитическую геометрию, внес большой вклад в раннее развитие численных методов, проводил исследования, направленные на определение веса Земли, изучал оптические явления, в частности рефракцию световых волн. В ходе оказавшейся весьма продолжительной переписки с Паскалем он внес значительный вклад в теорию вероятностей.

Но коронные достижения Ферма относятся к теории чисел – анализу структурных соотношений каждого числа с остальными. Эти соотношения порождают бесчисленные головоломки, некоторые из которых не нашли решения и по сей день. Греки, например, обнаружили то, что они назвали совершенными числами, – это числа, которые равны сумме всех своих делителей, за исключением их самих, подобные 6 = 1 + 2 + 3. Следующее после 6 совершенное число 28 = 1 + 2 + 4 + 7 + 14. Третье такое число – это 496, следующее – 8128. Пятое совершенное число – 33 550336.

Пифагор открыл то, что он называл дружественными числами или «вторыми я» чисел, представляющие собой суммы всех делителей, отличных от самого числа. Все делители числа 284, то есть 1, 2, 4, 71 и 142, в сумме дают 220; все делители числа 220, то есть 1, 2, 4, 5, 10, 11, 20, 22, 44, 55 и 110, в сумме дают 284.

Никому не удалось установить правила для нахождения всех существующих совершенных чисел или всех дружественных чисел, как никто не сумел вывести формулы рядов, в которых они следуют друг за другом. С аналогичными трудностями мы сталкиваемся при рассмотрении простых чисел, подобных 1, 3 или 29, каждое из которых делится только на 1 и на самого себя. С одной стороны, Ферма считал, что он получил формулу вычисления простых чисел, но, с другой стороны, он предупреждал, что не смог теоретически доказать ее всеобщность. Формула, которую ему удалось найти, выдает 5, затем 17, затем 257 и, наконец, 65 537 – всё простые числа, а следующим числом, получаемым на основе его формулы, оказывается 4 294 967 297.

По-видимому, наибольшую славу Ферма принесло нацарапанное на полях «Арифметики» Диофанта утверждение, известное как великая теорема Ферма. Несмотря на трудность его доказательства, суть этого утверждения изложить несложно.

Греческий математик Пифагор впервые показал, что квадрат наибольшей стороны прямоугольного треугольника, гипотенузы, равен сумме квадратов двух других его сторон. Диофант, один из древнейших исследователей квадратных уравнений, написал сходное выражение: х4 + у* + г4 = и2. «Почему, – спрашивает Ферма, – Диофант не искал две [вместо трех] четвертых степени, дающих в сумме квадрат некоего числа? Дело в том, что это невозможно, и мой метод дает возможность доказать это со всей строгостью». Ферма заметил, что Пифагор был прав, написав а2 + b2 = с2, но а3 + b3 не будут равны с3 и ни для одного показателя степени, большего чем 2, такое равенство не будет выполняться: теорема Пифагора верна только для квадратов.

И затем Ферма написал на полях книги: «У меня есть прекрасное доказательство этого утверждения, но здесь негде его записать». Этой короткой фразой он ошарашил математиков, которые вот уже 350 лет пытаются найти теоретическое доказательство утверждения, получившего многочисленные эмпирические подтверждения. В 1993 году английский математик Эндрю Уайлс (Wiles) заявил, что он решил эту головоломную задачу после семи лет работы в Принстоне. Его результаты были опубликованы в «Annals of Mathematics» в мае 1995 года, но математики всё еще спорят относительно того, что он, собственно, получил.

Великая теорема Ферма представляет собой скорее курьез, чем постижение окружающего мира. А вот решение, которое Ферма и Паскаль разработали для задачи о разделе банка в незавершенной игре, до сих пор приносит пользу обществу в качестве краеугольного камня современной системы страхования и других форм управления риском.

Решение задачи об очках основывается на том, что игрок, опережающий противника в момент остановки игры, имеет больше шансов на победу, если игра продолжится. Но насколько больше? Насколько малы шансы отстающего игрока? Как, в конце концов, перекинуть мост от этой задачи к науке прогнозирования?

Переписка Паскаля и Ферма, которую они вели по этому поводу в 1654 году, обозначила эпохальное событие в истории математики и теории вероятностей (Эта переписка в полном объеме, переведенная на английский язык, опубликована в: [David, 1962, Приложение 4].). Удовлетворяя любопытство, проявленное к этой старой проблеме шевалье де Мере, они создали систематический метод анализа ожидаемых исходов. Поскольку может произойти больше вещей, чем происходит на самом деле, Паскаль и Ферма предложили процедуру определения вероятности каждого из возможных результатов при допущении, что исходы могут быть оценены математически.

Они подошли к проблеме с разных позиций. Ферма обратился к чистой алгебре. Паскаль оказался более изобретательным: он использовал геометрическую форму для представления алгебраических структур. Его методология проста и приложима к широкому спектру проблем теории вероятностей.

Основная математическая идея, стоящая за этим геометрическим представлением алгебраических соотношений, зародилась задолго до Паскаля и Ферма. Омар Хайям обсуждал ее примерно на 450 лет раньше. В 1303 году китайский математик Ху Шайчи, явно не претендуя на оригинальность, подошел к проблеме с помощью способа представления, который он называл «правдивое зеркало четырех элементов». Кардано тоже знал об этом методе.

Правдивое зеркало Ху приобрело известность как треугольник Паскаля. «Пусть кто-нибудь попробует утверждать, что я не сказал ничего нового, – с гордостью пишет Паскаль в автобиографии. – Новшеством является трактовка предмета. Когда мы играем в теннис, мяч у нас общий, но один из нас играет лучше».

С первого взгляда на треугольник Паскаля рябит в глазах, но его структура достаточно проста: каждое число равно сумме двух чисел, расположенных над ним справа и слева.

Вероятностный анализ начинается с вычисления числа возможных ситуаций, обеспечивающих определенный исход некоего события – circuit Кардано (См.главу 3, стр. 68. – Примеч. переводчика.). Именно эта совокупность и представлена последовательностью чисел в каждой строке треугольника Паскаля. Первая строка представляет вероятность события, которое не может не произойти. Здесь возможен только один исход с нулевой неопределенностью; это, по сути, не относится к вероятностному анализу. Вторая строка уже представляет вероятностную ситуацию с шансами 50 на 50: вероятность исхода в ситуации, подобной рождению мальчика или девочки в семье, планирующей иметь только одного ребенка, или вероятность того, что при одном броске монеты вам выпадет именно орел или решка. При наличии только двух возможных исходов результат может быть тот или иной: мальчик или девочка, орел или решка; вероятность рождения мальчика, а не девочки или выпадения орла, а не решки равна 50%.

Рассмотрим в том же духе остальные строки треугольника. Третья строка моделирует ситуацию с семьей, в которой двое детей. Возможны четыре варианта: один шанс за двух мальчиков, один шанс за двух девочек и два шанса за то, что в семье есть и мальчик, и девочка – мальчик старше и мальчик младше девочки. Теперь, в конечном счете, один мальчик (или одна девочка) появляются в трех из четырех исходов, и, таким образом, вероятность наличия мальчика (или девочки) в семье с двумя детьми равна 75%, вероятность наличия мальчика и девочки в одной такой семье равна 50%. Очевидно, что процесс зависит от комбинаций чисел, которые были отмечены в работе Кардано, правда еще не опубликованной к тому времени, когда Паскаль взялся за решение задачи.

Этот же метод анализа приводит к решению задачи об очках. Рассмотрим вместо предложенной Пацциоли игры в balla бейсбол. Какова вероятность того, что ваша команда победит в World Series(Первенство США по бейсболу. – Примеч. переводчика.) после проигрыша первого матча? Если мы, как в случайных играх, предположим, что две команды играют одинаково, задача оказывается идентичной задаче об очках, которую решали Ферма и Паскаль.

Допустим, вторая команда уже выиграла одну игру. Каково число разных последовательностей результатов, возможных в шести играх, и какие из этих побед и поражений приведут вашу команду к победам в четырех играх, необходимым для выигрыша? Ваша команда может выиграть вторую игру, проиграть третью и затем выиграть последующие три. Она может проиграть две игры подряд и выиграть последующие четыре. Или она может выиграть нужные четыре игры сразу, оставив команду-соперника только с одним выигрышем. Сколько существует возможных комбинаций побед и поражений в серии из шести игр? Треугольник дает ответ на этот вопрос. Все, что вам нужно, вы найдете в соответствующей строке.

Заметьте, что вторая строка треугольника, строка с шансами 50 на 50, моделирует задачу о семье, имеющей одного ребенка, или задачу об одном броске монеты и описывает события с числом исходов, равным 2. Следующая строка показывает распределение исходов в задаче о семье с двумя детьми или в задаче о двух бросках монеты и описывает события, у которых число возможных исходов равно 4, или 22. Следующая строка описывает события с числом исходов, равным 8, или 23, и показывает распределение исходов в задаче о семье с тремя детьми. В задаче с шестью играми, оставшимися для определения победителя турнира, вам нужно рассмотреть строку с числом возможных исходов 26, то есть с 64 возможными последовательностями побед и поражений. Последовательность чисел в этой строке такова:1 6 15 20 15 6 1

Помните, что вашей команде для победы нужно выиграть еще четыре игры, а команде соперников нужны только три победы. Возможен случай, когда ваша команда выиграет все игры, а ее соперники не одержат ни одной победы; число 1 в начале строки относится к этому случаю. Следующее число 6. Оно фиксирует шесть разных возможных последовательностей исходов, при осуществлении которых ваша команда В выиграет турнир, а ее соперники С выиграют только одну игру:

OYYYYY YOYYYY YYCYYY YYYCYY YYYYOY YYYYYO

И существует пятнадцать разных возможных последовательностей исходов, при осуществлении которых ваша команда выиграет четыре игры, в то время как команда соперников победит дважды.

Все остальные комбинации в конце концов приводят к трем нужным для победы соперников выигрышам их команды и меньшему, чем необходимо для победы вашей команды (напоминаем: ей нужны четыре победы), числу ее выигрышей. Это значит, что существует 1 + 6 + 15 = 22 комбинации, при осуществлении которых ваша команда победит после поражения в первом матче, и 42 комбинации, при которых чемпионом станет команда соперников. В результате вероятность того, что после первого поражения ваша команда в оставшихся шести играх выиграет четыре прежде, чем команда соперников выиграет три, равна 22/64 или чуть больше одной третьей.

Из примера следует еще кое-что. Зачем ваша команда будет играть все шесть оставшихся игр в последовательности, в которой она может победить досрочно? Или зачем соперники будут играть все четыре игры, если они могут выиграть в трех и этого им будет достаточно для победы?

Хотя на деле ни одна команда не станет продолжать игру после достижения необходимого для определения чемпиона числа выигрышей, логически законченное решение проблемы было бы неосуществимо без рассмотрения всех математических возможностей. Как заметил Паскаль в переписке с Ферма, в ходе решения задачи математические законы должны доминировать над желанием самих игроков, рассматриваемых только как абстракции. Он поясняет, что «для них обоих абсолютно безразлично и несущественно, будет ли [игра] на деле идти до самого конца».

Переписка была для Паскаля и Ферма восхитительным опытом исследования новых интеллектуальных пространств. Ферма писал Каркави о Паскале: «Я уверен, что он способен решить любую проблему, за которую возьмется». В одном из писем к Ферма Паскаль признаётся: «Ваши числовые построения... превосходят мое понимание». В другом месте он характеризует Ферма как «человека такого выдающегося интеллекта... и такого высочайшего мастерства... [что его работы] сделают его первым среди геометров Европы».

У рассматриваемой задачи были аспекты, которые и Паскаля, глубоко погруженного в религиозные и моральные искания, и юриста Ферма беспокоили больше, чем связанные с ней математические проблемы. Согласно полученному ими решению, раздел банка в неоконченной игре в balla затрагивает проблемы морального права. Хотя игроки могли бы сразу поделить банк поровну, это решение Паскалю и Ферма кажется неприемлемым, потому что оно было бы несправедливым по отношению к игроку, который к моменту прекращения игры оказывается впереди.

Паскаль явно озабочен моральными аспектами проблемы и осторожен в словах. В своих комментариях к этой работе он отмечает: «...в первую очередь следует признать, что деньги, поставленные игроками на кон, им больше не принадлежат... но взамен они получают право ожидать того, что им принесет удача в соответствии с правилами, на которые они согласились вначале». Если они решат остановить игру, не доведя ее до конца, им придется вновь восстановить исходные права на внесенные в банк деньги. Тогда «должно действовать правило, согласно которому деньги нужно распределить пропорционально тому, что каждому обещала удача. <...> Это справедливое распределение известно как раздел». Справедливые пропорции раздела определяют принципы теории вероятностей.

С учетом этого подхода становится очевидным, что решение Паскаля-Ферма ярко окрашено идеей управления риском, хотя они явно не использовали это понятие. Только безумец идет на риск, если правила не определены, будь то balla, покупка акций IBM, строительство фабрики или согласие на удаление аппендикса.

Но помимо моральных проблем, предложенное Паскалем и Ферма решение приводит к точным обобщениям и правилам вычисления вероятностей, включая случаи участия более чем двух игроков, двух команд, двух полов, двух костей или монет с орлом и решкой. Применение этого подхода позволило им расширить границы теоретического анализа далеко за пределы наблюдений Кардано, что две кости с шестью гранями (или два броска одной кости) дадут 62 комбинаций, а один бросок трех костей дает 63 комбинаций.

Последнее письмо в переписке Паскаля и Ферма датировано 27 октября 1654 года. Меньше чем через месяц Паскаль прошел через своего рода мистический опыт. Он зашил описание этого события в свое платье, чтобы носить его у сердца, провозгласив: «Отречение, абсолютное и сладостное». Он отказался от занятий математикой и физикой, отрекся от роскоши, покинул старых друзей, продал всё, кроме религиозных книг, и вскоре ушел в парижский монастырь Пор-Рояль.

В июле 1660 года Паскаль совершил поездку в Клермон-Фер-ран, недалеко от жилища Ферма в Тулузе. Ферма предложил встретиться, чтобы «обняться и побеседовать пару дней», на полпути между двумя городами; он жаловался на плохое здоровье, объясняя нежелание взять на себя труд проехать все расстояние самому. В августе Паскаль в ответ написал:

Я едва помню, что существует такая вещь, как геометрия [т. е. математика. – П. Б.]. Я почитаю геометрию столь бесполезной, что не могу усмотреть разницу между геометром и хорошим ремесленником. Хотя я считаю ее лучшим в мире ремеслом, это все же не более чем ремесло... Весьма вероятно, что я никогда больше не буду думать об этом.

Во время пребывания в Пор-Рояле Паскаль собрал воедино свои мысли о жизни и религии и опубликовал их в книге, озаглавленной «Pensees» («Мысли»). Во время работы над этой книгой он заполнил с обеих сторон два листа бумаги, по словам Хакинга «написанные разбегающимся во все стороны почерком... полные подчисток, исправлений, производящие впечатление запоздалых раздумий». Этот фрагмент приобрел известность как пари Паскаля (le pari de Pascal). Здесь он задается вопросом: «Есть Бог или нет Бога? К чему нам склониться? Разум молчит».

Опираясь на свой анализ вероятных исходов игры в balla, Паскаль ставит вопрос в терминах случайных игр. Он постулирует игру, которая продолжается до бесконечности. В данный момент бросается монета. На что вы поставите – на орла (Бог есть) или решку (Бога нет)?

Хакинг утверждает, что ход рассуждений Паскаля в предложенном им варианте ответа на этот вопрос представляет собой начало теории принятия решений. «Теория принятия решений, – рассуждает Хакинг, – это теория о том, на что решиться, когда неизвестно, что произойдет». Принятие такого решения является первым и важнейшим шагом при любых попытках управлять риском.

Иногда мы принимаем решения на основе прошлого опыта, тех экспериментов, которые мы или другие проводили в течение жизни. Но нам недоступен эксперимент, способный доказать бытие или небытие Бога. Зато в наших силах исследовать будущие последствия веры или неверия в Бога. Мы никогда не сможем избавиться от этой дилеммы, потому что самим актом своего существования принуждены играть в эту игру.

Паскаль объясняет, что вера в Бога – это не решение. Вы не можете проснуться утром и сказать: «Сегодня, кажется, я решу верить в Бога». Вы верите или не верите. Решением, следовательно, является выбор или отказ от таких действий, которые будут вести к вере в Бога, подобно общению с благочестивыми людьми и следованию жизни «святой и праведной». Следующий этим предписаниям ставит на то, что Бог есть. Тот, кто не может смириться с ними, ставит на то, что Бога нет.

Единственный способ выбрать между ставкой на то, что Бог есть, и ставкой на то, что Он не существует, в этой описанной Паскалем бесконечной игре с бросанием монеты заключается в принятии решения, является ли исход, при котором Бог существует, в некотором смысле более предпочтительным, чем исход, в соответствии с которым Бог не существует, даже если шансы могут быть только 50 на 50. Как раз этот взгляд привел Паскаля к решению – к выбору, в котором ценность исхода и вероятность того, что он будет иметь место, различаются, потому что последствия обоих исходов различны.

Если Бога нет, не важно, ведем мы праведную жизнь или грешим. Но предположим, что Бог есть. Тогда, поставив против Его существования и отказавшись от праведной жизни, вы рискуете быть обреченным на вечные муки; поставив же на существование Бога, вы приобретаете возможность спасения, если Он есть. Поскольку спасение, естественно, предпочтительнее вечных мук, правильным следует признать решение исходить в своем поведении из предположения, что Бог есть. «К чему нам склониться?» Для Паскаля ответ был очевиден.

Здесь Паскаль предвосхитил эпохальное открытие Даниила Бернулли в теории принятия решений, сделанное им в 1738 году, о чем мы поговорим подробно в главе 6. Латинское название этой книги было «Ars Cogitandi», см.: [Hacking, 1975, p. 12, 24].

Когда Паскаль решил пустить в оборот прибыль от принадлежавшей ему омнибусной линии, чтобы оказать финансовую помощь монастырю Пор-Рояль, он получил интересный побочный продукт. В 1662 году группа его сотоварищей по монастырю опубликовала работу большой важности, «La logique, ou 1»art de penser» («Логика, или Искусство мыслить»), которая между 1662-м и 1668 годами выдержала пять изданий. Хотя имя ее автора не было названо, основным – но не единственным – автором считается Антуан Арно, которого Хакинг полагает, «по-видимому, самым блестящим теологом своего времени». Книга была немедленно переведена на другие европейские языки и еще в XIX столетии использовалась в качестве учебника.

В последней части книги есть четыре главы о вероятности, которые касаются процесса развития гипотезы, основанной на ограниченном наборе фактов; сегодня этот процесс называют статистическим выводом. Среди прочего в этих главах излагаются «правило должного применения разума в определении ситуаций, когда следует подчиниться авторитету других», правила истолкования чудес, основа для истолкования исторических событий и рассказывается о применении количественных измерений вероятности.

В последней главе описывается игра, в которой каждый из десяти игроков ставит одну монету в надежде выиграть девять монет партнеров по игре. Автор указывает, что есть «девять шансов потерять монету и только один – выиграть девять». Несмотря на тривиальность, эта фраза заслужила бессмертие. По утверждению Хакинга, это первый случай в печатной литературе, «когда вероятность, что называется, измерена».

Выражение заслуживает бессмертия не только по этой причине. Автор предполагает, что описываемые им игры тривиальны, но он проводит аналогию с событиями, взятыми из жизни. Например, вероятность быть убитым молнией мала, но «многие люди... очень пугаются при звуках грома». Затем он высказывает принципиально важное утверждение: «Страх перед ущербом должен быть пропорционален не только величине ущерба, но и вероятности его нанесения». Здесь мы сталкиваемся еще с одной важной новой идеей: на решение должны влиять оба фактора – тяжесть последствий и их вероятность. Можно эту мысль сформулировать иначе: решение должно учитывать и силу нашего желания некоего определенного исхода, и оценку того, насколько вероятен желательный исход.

Сила нашего стремления к чему-либо, что представляется полезным, быстро становится чем-то большим, чем простой служанкой вероятности. Полезность занимает центральное место во всех построениях теории принятия решений и готовности к риску. Позже мы не раз вернемся к этой мысли.

Историки любят отмечать случаи, когда что-то очень важное почти случилось, но по той или иной причине все-таки не произошло. История треугольника Паскаля – яркий пример такого случая. Мы видели, как можно строить предположения о возможном числе мальчиков и девочек в многодетных семьях. Мы выяснили, как определять вероятные результаты в чемпионате (для равных по классу команд) после того, как часть матчей уже сыграна. Короче говоря, мы уже делали прогнозы! Паскаль и Ферма сумели завладеть ключом к систематическому методу вычисления вероятности будущих событий. Они еще не повернули этот ключ, но уже вставили его в замок. Значение их открытий для управления риском и принятия решений в бизнесе, в частности в системе страхования, было оценено другими. В «Логике» Пор-Рояля сделан первый важный шаг. От Паскаля и Ферма идея предсказания тенденций экономического развития или использования вероятности для предсказания экономических потерь была еще слишком удалена, чтобы они могли заметить и по достоинству оценить ее. Только ретроспективный взгляд позволяет увидеть, как близко они к этому подошли.

Банковский Форекс. На рынке – с 1996 года. До 2016 года обслуживание всех клиентов осуществлялось от лица банка с лицензией Банка России (АО «Нефтепромбанк»). В начале 2016 года был проведен ребрендинг и перевод обслуживания частных клиентов в международную компанию «NPBFX Limited» с лицензией IFSC. В банке продолжается обслуживание корпоративных клиентов. Выгодные торговые условия, разрешен скальпинг и автоматическая торговля, для частных клиентов минимальный депозит – от $10.

Неизбежная неопределенность будущего никогда не позволит нам полностью изгнать тень рока из наших надежд и страхов, но после 1654 года способ мумбо-юмбо был навсегда вычеркнут из числа методов прогнозирования и выбора решений.

Содержание Далее

Коттл С. и др. «Анализ ценных бумаг» Грэма и Додда

Кохен Д. Психология фондового рынка: страх, алчность и паника

Кравченко П.П. Как не проиграть на финансовых рынках

Лефевр Э. Истории Уолл-стрит

Лолиш Г. Научите меня играть! Учебник биржевой игры для начинающих

МакМиллан Л.Дж. МакМиллан об опционах

Монестье А. Легендарные миллиардеры

Найман Э.Л. Трейдер-Инвестор

Нидерхоффер В. Университеты биржевого спекулянта

Оберлехнер Т. Психология рынка Forex

Орлов А. Записки биржевого спекулянта. Уроки валютного дилинга

Пайпер Дж. Дорога к трейдингу

Райан Дж. Биржевая игра. Сделай миллионы – играя числами

Рашке Л.Б. Как ловить дни тренда

Робинсон Дж. Миллионеры в минусе или Как пустить состояние на ветер

Стюарт Дж. Алчность и слава Уолл-Стрит

Тарп В.К. и др. Биржевые стратегии игры без риска

Фишер Ф.А. Обыкновенные акции и необыкновенные доходы

Элдер А. Трейдинг с доктором Элдером: энциклопедия биржевой игры

Якимкин В.Н. Forex: как заработать большие деньги

Психология трейдинга Дэйтрейдинг и скальпинг Управление капиталом Развлекательная литература
Библиотека успешного трейдера